CSCI 2320: Principles of
Programming Languages

Syntactic Analysis

Ch 3 (Tucker-Noonan)

Handouts:
Canvas -> Modules -> Handouts -> Syntax and

Semantics

Mohammad T. Irfan

1 =15 + 5 * 2;

Intermediate
code

Parse
tree

Lexical
units

We can run it later

Lexical analysis

Lexemes Tokens

Great news: regular grammar/expression works

Syntactic analysis or parsing

Stream of Parse tree/

Q: Will regular grammar/expression work?

Parsing question
Inputs: Grammar G and a string of terminals x
Is X in L;?

L; = Language corresponding to G
= Set of strings generated by G

Types of parsers

Top-down parsing:
Recursive descent (RD)

RD parser for assignment stmt

Assignment =2 Id = Expr;

Expr 2 Term {AddOp Term}

AddOp =2 + | -

Term = Factor {MulOp Factor}

MulOp =2 * | /

Factor = [UnaryOp] Primary

UnaryOp =2 -

Primary = Id | IntLiteral | FloatLiteral | (Expr)

... <Lexical syntax for Id, IntLiteral, FloatLiteral> ...

Python code for smaller version

Expr 2 Term {(+|-) Term}
Term —> Factor {(*|/) Factor}
Factor =2 IntlLiteral

... <Lexical syntax for IntLiteral> ...

Download code from Canvas -> Modules -> Code -> Parsing

Requirements for RD parser

1. Know the FIRST set for each non-terminal
2. Do "left factoring”

3. Remove left recursions (why?)

FIRST set

FIRST(X) = the set of all terminal symbols (or
tokens) that can occur as the leftmost symbol in a
string derived from X.

For a terminal symbol a, FIRST(a) = {a}

Find FIRST sets of non-terminal symbols in C Lite.

Concrete Syntax: C Lite

Program — Type main () { Declarations Statements }

Declarations — { Declaration } :_

Declaration — Type Identifier | [Integer | | {, Identifier | [Integer]| } ;

Iype > int | bool | float | char

Statements — { Statement }

Statement — ; | Block | Assignment | IfStatement | WhileStatement
Block — { Statements }

Assignment —> Identifier | [Expression | | = Expression ;

IfStatement — 1 £ (Expression) Statement [else Statement]

WhileStatement — while (Expression) Statement

Concrete Syntax (cont...)

Expression — Conjunction { | | Conjunction }
Conjunction — Equality { && Equality }
Equality — Relation | EquOp Relation]
EquOp == | !=
Relation — Addition | RelOp Addition]

RelOp —»> < | <= | > | >=
Addition — Term { AddOp Term }
AddOp —> + | -

Term — Factor { MulOp Factor }
MulOp — * | / | %
Factor — | UnaryOp 1 Primary
UnaryOp —» - | !
Primary —> Identifier | [Expression]] | Literal | (Expression) |
Type (Expression)

Left factoring

e IfStmt 2 if Expr then Stmt
e IfStmt - if Expr then Stmt else Stmt

 Why can’t LL(1) parser deal with it?

e Solution

* Find the largest prefix o and factor it out
A 9 O(Bl | O‘BZ

A 2 oA
A' 2 By | B

Removing left recursion

* Example
e Algorithm (assume no cycle; i.e., no A => A)

Nonterminals: A;, A,, ..., A, (ordered arbitrarily)
For 1 = 1 to n
For each] < 1 No IeftArecursion here
f \
Let Aj - 61 | 62 | ... 6]{

Replace each A; 2 A, y by
A, 2 O,y | Sy | ... | dyy

Eliminate left recursion from all A; products

Table-driven LL(1) parser

Grammar format: BNF

* Remove left recursion (can’t do EBNF loops)
* Do left factoring

* Augment the grammar with an artificial start
symbol S as follows: S = Actual_Start_Symbol S

FIRST(a) ={a:a="af} U (if a =" ethen {¢} else &)
FOLLOW(A)={a:S="aAaf} U (ifS=" a A then {¢} else &)

Programming Languages by Michael Scott

Algorithm

https://www.cs.princeton.edu/courses/archive/spr
ing20/cos320/LL1/

Reference: handout (Prof. Irfan’s notes)

Textbook reference: pg. 81

Caution: The textbook does not detail how the
table is constructed

https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/
https://www.cs.princeton.edu/courses/archive/spring20/cos320/LL1/

RD vs. Table-driven

Comparison
How to choose a parser?

Literature review

* NP-complete:
Given a CFG, is there an LL(1) parser?

* Impossibility example:
l;={a"0b" | n>=1}U{a"1b?" | n>=1}
 Why is LL(1) parsing impossible here?

Literature review

* |s there always a parser (not necessarily LL(1)) for
any CFG? "

Cocke & Younger (1967) and
Kasami (1965)

* First parser for any CFG
* Bottom-up parser: Dynamic prog. O(n3)

 Earley’s algorithm (1970)
* Top-down: Dynamic prog. O(n3)

* Frost (2007): First top-down parser for any CFG;
improved by Ridge (2014)

